高级

办公电话:
.
邮箱:
个人主页:
科研领域:
.
 个人简介

高级,中国科学技术大学地球和空间科学学院,副研究员。主要从事近地表综合地球物理成像研究,研究兴趣:(1) 地震电磁综合成像 (2) 被动源面波不同尺度成像研究, 包括矿产资源、工程及城市地下空间探测等。发表一作/通讯论文 18 篇,包括Geology, JGR, Tectonophysics, GJI ,地球物理学报 等。

 课题&项目

3. 蒙城地球物理国家野外科学观测研究站开放基金,密集地震台阵研究郯庐断裂张八岭段三维速度结构,主持,2020/02-2021/02。

2. 科技部重点研发项目“综合地球物理联合反演与解释一体化平台建设”,专题负责人,2018-07 至2021-06 。

1. 国家自然科学基金青年基金,背景噪声面波与大地电磁三维联合反演研究及其在五大连池火山地区的应用, 主持,2018-2020。

 学习经历

2013-2016,中国科学技术大学,博士,专业:固体地球物理

2006-2009,中国矿业大学,硕士,专业:固体地球物理

2002-2006,中国矿业大学,本科,专业:应用地球物理与信息处理

 工作经历

2021.4-           ,中国科学技术大学,副研究员

2018.7-2021.4,中国科学技术大学,特任副研究员

2016.9-2018.7中国科学技术大学,博士后

 发表文章

第一/通讯作者论文

2024

19) 刘梁,鄢毛毛,刘攀飞,潘登,杨少博,高级*,张海江.基于微动成像与微地震监测的盐矿溶腔及开采活动性研究[J/OL].地球物理学进展, 1-15. http://kns.cnki.net/kcms/detail/11.2982.P.20240318.1558.020.html.

2023

18)  Gao, J., Zha, H., & Zhang, H. (2023, December). High Frequency Passive Surface Wave Dispersion Extraction by Linear Seismic Array Aligned with Noise Source Azimuth. In Journal of Physics: Conference Series (Vol. 2651, No. 1, p. 012029). IOP Publishing.

17) 张泽奇,高级*,刘梁,查华胜 张海江.(2023).基于三角和线性台阵的煤矿背景噪声成像技术适用性研究.物探与化探(06),1528-1537.

16) Huang, Y., Moorkamp, M., Gao, J.*, & Zhang, H.* (2023). Seismogenic structure of the 2014 M6. 5 Ludian earthquake from three‐dimensional joint inversion of magnetotelluric data and seismic arrival times, Journal of Geophysical Research: Solid Earth, e2022JB026151,https://doi.org/10.1029/2022JB026151.. 

15) 高级, 张海江, 查华胜, 吴剑超, 吴冬冬, 徐有朝, 潘登, 古宁, (2023), 台阵和噪声源分布对微动成像的影响及其在盐矿溶腔探测中的应用, 地球物理学报, 66(6):2489-2506,doi:10.6038/cjg2022Q0219.

2022

14)  杨少博, 王炳文, 高级* & 张海江. (2022).东祁连山北缘断裂带基于深度学习的密集台阵地震事件快速检测与定位研究. 震灾防御技术, (01), 38-45., https://doi.org/10.11899/zzfy20220103.

13)Gu, N., Gao, J.*, Wang, B., Lu, R., Liu, B., Xu, X., & Zhang, H.* (2022). Ambient noise tomography of local shallow structure of the southern segment of Tanlu fault zone at Suqian, eastern China. Tectonophysics, 229234. https://doi.org/10.1016/j.tecto.2022.229234

12)黄宇奇,查华胜,高级*,令狐建设*,宣金国,周建斌,董润平,霍晶晶,张海江 等. (2021). 基于密集台阵地震背景噪声成像预测煤矿瓦斯分布. 地球物理学报, 64(11): 3997-4011, https://.org/10.6038/cjg2021O0483.

11) Gao, J., Zhang, H., Zhang, H., Zhang, S., &  Cheng, Z., (2020) Three-dimensional magnetotelluric imaging of the SE Gonghe Basin:implication for the orogenic uplift in the northeastern margin of theTibetan plateau. Tectonophysics,,789, 228525. https://doi.org/10.1016/j.tecto.2020.228525.

10) Gao, J., Zhang, H., Zhang, S., Xin, H., Li, Z., Tian, W., Bao, F., Cheng, Z., Jia, X., & Fu, L. (2020)  Magma recharging beneath the Weishan volcano of the of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology,  48 (9), 913–918, https://doi.org/10.1130/G47531.1.

9) Gao, J., Zhang, H., Zhang, S., Chen, X., Cheng, Z., Jia, X.,  Li, S., Fu, L., Gao, L., & Xin, H. (2018). Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76(11), 15-25, https://doi.org/10.1016/j.geothermics.2018.06.009.

8) Gao, J., & Zhang, H. (2018). An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography. Geophysical Journal International, 213(2), 1044-1055, https://doi.org/10.1093/gji/ggy026.

7) 高级, 张海江, 方洪健, &李楠. (2017). 一种高效的基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演策略. 地球物理学报, 60(9), 3628-3641, https://doi.org/10.6038/cjg20170927.

6) 高级, 张海江, &秦臻. (2017). 基于共轭梯度的全通道 3D 井地井电阻率成像研究. 地球物理学进展, 32(1), 135-141.

5) 高级, &张海江. (2016). 基于交叉梯度交替结构约束的二维地震走时与全通道直流电阻率联合反演. 地球物理学报, 59(11), 4310-4322, https://doi.org/10.6038/cjg20161131.

4) 高级, 张海江, &秦臻. (2016). 不同观测方式下基于伴随矩阵的 2.5 D 全通道电阻率反演研究. 地球物理学进展, 31(6), 2534-2540.

3) 高级, &方洪健. (2016). 1-Norm/2-Norm 约束及小波多尺度 2D 体波走时成像. 物探化探计算技术, 38(6), 765-772.

2) 高级, 崔若飞, &刘伍. (2008). 矿井瞬变电磁数据处理解释及显示技术研究. 煤炭科学技术, (7), 77-79.

1) 高级, 崔若飞, &刘伍. (2008). 煤矿地震数据三维可视化研究. 煤田地质与勘探, 36(4), 62-66.


合作论文

9) Wang, K., Qian, J., Zhang, H., Gao, J., Bi, D., & Gu, N. (2022). Seismic imaging of mine tunnels by ambient noise along linear arrays. Journal of Applied Geophysics, 104718,DOI: 10.1016/j.jappgeo.2022.104718.

8) Yang, S., Zhang, H., Gu, N., Gao, J., Xu, J., Jin, J., ... & Yao, H. (2022). Automatically Extracting Surface‐Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network. Seismological Society of America, 93(3), 1549-1563,DOI: 10.1785/0220210280.

7) Gu, N., Chamarczuk, M., Gao, J., Malinowski, M., & Zhang, H. (2021). Passive Seismic Structure Imaging of a Coal Mine by Ambient Noise Seismic Interferometry on a Dense Array. Acta Geologica Sinica‐English Edition, 95(S1), 37-39,https://doi.org/10.1111/1755-6724.14826.

6) Ning, Gu., Haijiang, Zhang, Nakata, N., & Ji, Gao. (2021). Fault detection by reflected surface waves based on ambient noise interferometry. Earthquake Research Advances, 100035,https://doi.org/10.1016/j.eqrea.2021.100035.

5)  Li, H., Li, J., Gu, N., Gao, J., & Zhang, H. (2020). Ambient noise surface wave reverse time migration for fault imaging. Journal of Geophysical Research: Solid Earth, 125(12), e2020JB020381.https://doi.org/10.1029/2020JB020381.

4) 莘海亮, 曾宪伟, 康敏, & 高级. (2020) 海原弧形构造区地壳三维精细速度结构成像, 地球物理学报, 63(03), 897-914,https://doi.org/10.6038/cjg2020N0067.

3) Gu, N., Wang, K., Gao, J., Ding, N., Yao, H., & Zhang, H. (2019). Shallow Crustal Structure of the Tanlu Fault Zone Near Chao Lake in Eastern China by Direct Surface Wave Tomography from Local Dense Array Ambient Noise Analysis. Pure and Applied Geophysics, 176(3), 1193-1206, https://doi.org/10.1007/s00024-018-2041-4.

2) Xin, H., Zhang, H., Kang, M., He, R., Gao, L., & Gao, J. (2019). High‐Resolution Lithospheric Velocity Structure of Continental China by Double‐Difference Seismic Travel‐Time Tomography. Seismological Research Letters, 90(1), 229-241, https://doi.org/10.1785/0220180209.

1)Liu, Y., Zhang, H., Fang, H., Yao, H., & Gao, J. (2018). Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. Journal of Applied Geophysics, 159(12), 209-217, https://doi.org/10.1016/j.jappgeo.2018.08.009.