地球和空间科学学院

郭静楠

办公电话: 55163601859

邮箱:jnguo@ustc.edu.cn

个人主页:https://ess.ustc.edu.cn/2022/0929/c32212a572067/page.htm

科研领域:.

个人简介:

海外高层次引进人才,中国科学技术大学地球和空间科学学院教授,博士生导师。长期从事高能粒子的产生、传播、空间辐射以及行星际空间环境方面的研究,至今共发表SCI论文100余篇;包括第一作者或通讯作者论文40多篇;总引用几千余次,H因子31;主持了国家基金委面上项目2个;作为核心成员参与了中科院先导项目和民用航天项目等。取得的成果十余次被相应的期刊、美国宇航局(NASA)、欧空局(ESA)Physics Today等知名学术网站专题报道。两次获得NASA团队集体成就奖;在各类国际会议上作邀请报告20余次;多次在国际会议上组织专题;多次被NASA和欧盟邀请担任项目的评审专家;长期担任业内各类期刊(ApJJGRSWFrontiers等)的审稿人;目前是国际空间研究协会COSPAR-ISWAT空间辐射专题的主持(https://www.iswat-cospar.org/h3),也是美国地球物理学会AGU会刊EoS的科学顾问和国际期刊Journal of Planetary and Space Science的副主编。



Introduction:

Professor Dr. Jingnan Guo earned her PhD in Astrophysics and is currently a professor at the School of Earth and Space Sciences in the University of Science and Technology of China. Her research group focuses on space radiation and planetary space weather with the goal to gain a thorough understanding of particle radiation environment in space including its origin, effect and variability which is essential for planning space missions, in particular crewed explorations such as a manned mission to the Moon or Mars. 


文章列表/Publications: 7000+ citations with an H-index of 33 according to Scopus (https://www.scopus.com/authid/detail.uri?authorId=55751128300)


109. Zhang, J.Guo, J.,  Zhang, Y.,  Cao, Y.,  Dobynde, M. I.,  Li, C., et al. (2024).  The 2022 February 15 solar energetic particle event at Mars: A synergistic study combining multiple radiation detectors on the surface and in orbit of Mars with modelsGeophysical Research Letters,  51, e2024GL111775. https://doi.org/10.1029/2024GL111775 


108. Yubao Wang & Jingnan Guo (2024),A statistical study on the peak and fluence spectra of Solar Energetic Particles observed over 4 solar cycles,  Astronomy and Astrophysics, 691, A54, https://doi.org/10.1051/0004-6361/202450046


107. Yihua Zheng et al. (2024), Overview, progress and next steps for our understanding of the near-earth space radiation and plasma environment: Science and applications, Advances in Space Research. https://doi.org/10.1016/j.asr.2024.05.017


106. Jingnan Guo*, et al. (2024).Particle Radiation Environment in the Heliosphere: Status, limitations and recommendations, Advances in Space Research, Advances in Space Research. https://doi.org/10.1016/j.asr.2024.03.070

 

105. Insoo Jun, Henry Garrett, Wousik Kim, Yihua Zheng, Shing F. Fung, Claudio Corti, Natalia Ganushkina, and Jingnan Guo (2024) A review on radiation environment pathways to impacts: Radiation effects, relevant empirical environment models, and future needs, Advances in Space Research. https://doi.org/10.1016/j.asr.2024.03.079


104. ChenXuan Zhang, XianGuo Zhang, JinBin Cao, Lei Li, XiaoPing Zhang, JingNan Guo, LiangHai Xie, ShenYi Zhang, XinYue Wang. (2024) Distribution, Evolution, and Origin of the Lunar Energetic Particles, Space Sci Technol. 4:0119. https://doi.org/10.34133/space.0119


103.  M.I. Dobynde* & J. Guo* (2024), Guidelines for radiation-safe human activities on the Moon, Nature Astronomy , 8, 991–999. https://doi.org/10.1038/s41550-024-02287-8

 

102. M. Dobynde, J. Harikumaran, J. Guo*, P. Wheeler, M. Galea and G. Buticchi (2024) Cosmic Radiation Reliability Analysis for Aircraft Power Electronics, IEEE Transactions on Transportation Electrification, doi: 10.1109/TTE.2023.3278319. http://dx.doi.org/10.1109/tte.2023.3278319

 

101. Weihao Liu, Jingnan Guo*, Yubao Wang, Tony Slaba (2024) A Comprehensive Comparison of Various Galactic Cosmic Ray Models to theState-of-the-Art Particle and Radiation Measurements,  The Astrophysical Journal Supplement, 271, 18. https://doi.org/10.3847/1538-4365/ad18ad

 

100. Bailiang Liu, Jingnan Guo*, Mikhail Dobynde, Jia Liu, Yingnan Zhang, Liping Qin (2024) Modeling of cosmogenic Cr isotopes produced in lunar rocks compared with existing calculations and measurements,  Journal of Geophysical Research: planets,  129, e2023JE008069. https://doi.org/10.1029/2023JE008069

 

99. Wang et al. (2024) Calibration of the Zero Offset of the Fluxgate Magnetometer on Board the Tianwen-1 Orbiter in the Martian Magnetosheath, Journal of Geophysical Research: Space Physics, 129, e2023JA031757. https://doi.org/10.1029/2023JA031757 

 

98. A. Kouloumvakos, A. Papaioannou, C. O. G. Waterfall, S. Dalla, R. Vainio, G. M. Mason, B. Heber, P. Kuhl, R. C. Allen, C.M.S. Cohen, G. Ho, A. Anastasiadis, A. P. Rouillard, J. Rodríguez-Pacheco, J. Guo, X. Li, M. Horock, R. F. Wimmer-Schweingruber (2024) The multi-spacecraft high-energy solar particle event of 28 October 2021. Astronomy & Astrophysics. https://doi.org/10.1051/0004-6361/202346045 

 

97. J. Semkova*, V. Benghin, Jingnan Guo et al. (2023) Comparison of the flux measured by Liulin-MO dosimeter in ExoMars TGO science orbit with the calculations, Life Sciences in Space Research/LSSR, 39, 119-130. https://doi.org/10.1016/j.lssr.2022.08.007

 

96. Yuncon Li, Jingnan Guo*, Salman Khaksarighiri et al. (2023) The impact of space radiation on brains of future Martian and lunar explorers, Space Weather, 21, e2023SW003470. https://doi.org/10.1029/2023SW003470

 

95. Martinez Sierra, L. M., Jun, I., Ehresmann, B., Zeitlin, C., Guo, J., Litvak, M., et al. (2023) Unfolding the neutron flux spectrum on the surface of Mars using the MSL-RAD and Odyssey-HEND data. Space Weather, 21, e2022SW003344. https://doi.org/10.1029/2022SW003344

 

94. Bingkun Yu et al. (2023) Tianwen-1 and MAVEN Observations of the Response of Mars to an Interplanetary Coronal Mass Ejection, The Astrophysical Journal/ApJ, 953 105. https://doi.org/10.3847/1538-4357/acdcf8

 

93. Yutian Chi et al (2023) The Dynamic Evolution of Multipoint Interplanetary Coronal Mass Ejections Observed with BepiColombo, Tianwen-1, and MAVEN ApJ Letters, 951 L14. https://doi.org/10.3847/2041-8213/acd7e7

 

92. Yutian Chi et al (2023). Interplanetary Coronal Mass Ejections and Stream Interaction Regions Observed by Tianwen-1 and MAVEN at Mars, ApJ Supplement Series, 267 3. https://doi.org/10.3847/1538-4365/acd191

 

91. Jingnan Guo*., Li, X., Zhang, J., Dobynde, M. I., Wang, Y., et al. (2023), The first ground level enhancement seen on three planetary surfaces: Earth, Moon, and Mars, Geophysical Research Letters/GRL, 50, e2023GL103069. https://doi.org/10.1029/2023GL103069

 

90. Yuming Wang* et al. (2023), The Mars orbiter magnetometer of Tianwen-1: in-flight performance and first science results, Earth and Planetary Physics, 7, 1. https://doi.org/10.26464/epp2023028

 

89. Zou, Zhuxuan, Yuming Wang, Tielong Zhang,... and Jingnan Guo (2023), In-flight Calibration of the Magnetometer on the Mars Orbiter of Tianwen-1, Science China Technological Sciences. https://doi.org/10.1007/s11431-023-2401-2

 

88. Jian Zhang, Jingnan Guo*, Mikhail I. Dobynde (2023), What Is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars?, Space Weather, 21, e2023SW003490. http://doi.org/10.1029/2023SW003490

 

87. W. Liu, Jingnan Guo*, J. Zhang, J. Semkova (2023), Modeling the Radiation Environment of Energetic Particles at Mars Orbit and a First Validation against TGO Measurements, ApJ, 949, 77. https://doi.org/10.3847/1538-4357/acce3c

 

86. S. Khaksarighiri*, Jingnan Guo*, Robert F. Wimmer-Schweingruber* et al. (2023), The Zenith-Angle Dependence of the Downward Radiation Dose Rate on the Martian Surface: Modeling Versus MSL/RAD Measurement, Journal of Geophysical Research: Planets, 128, e2022JE007644. https://doi.org/10.1029/2022JE007644

 

85. Su, Zhenpeng et al. (2023), Unusual Martian foreshock waves triggered by a solar wind stream interaction region, ApJ Letters, 947, L33. https://doi.org/10.3847/2041-8213/accb9f

 

84. Lee, C, O et al. (2023), Heliophysics and space weather science at 1.5 AU: Knowledge gaps and need for space weather monitors at Mars, Frontiers in Astronomy and Space Sciences, 10, 1064208. https://doi.org/10.3389/fspas.2023.1064208

 

83. B. Ehresmann, C. Zeitlin , D. M. Hassler, J. Guo et al. (2023) The Martian Surface Radiation Environment at Solar Minimum measured with MSL/RAD, Icarus, 393, 115053. https://doi.org/10.1016/j.icarus.2022.115035

 

82. Yuming Wang* et al. (2023), Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere, Advances in Space Research, 71, 1. https://doi.org/10.1016/j.asr.2022.10.045

 

81. Zigong Xu*, Jingnan Guo, Robert F. Wimmer-Schweingruber* et al., (2022), Primary and albedo protons detected by the Lunar Lander Neutron and Dosimetry (LND) experiment on the lunar farside, Frontiers in Astronomy and Space Sciences, 9, 974946. https://doi.org/10.3389/fspas.2022.974946

 

80. S. Fu et al. (2022), First report of a solar energetic particle event observed by China’s Tianwen-1 mission in transit to Mars, Astrophys. J. Lett., 934, L15. https://iopscience.iop.org/article/10.3847/2041-8213/ac80f5/pdf

 

79. Wang, Yuming*, Jingnan Guo*, Gang Li, Elias Roussos, and Junwei Zhao (2022). Variation in Cosmic-Ray Intensity Lags Sunspot Number: Implications of Late Opening of Solar Magnetic Field, The Astrophysical Journal/ApJ, 928 157. https://iopscience.iop.org/article/10.3847/1538-4357/ac5896

 

78. Zhang, J., Guo*, J., Dobynde, M. I., Wang, Y., & Wimmer-Schweingruber, R. F. (2022). From the top of Martian Olympus to deep craters and beneath: Mars radiation environment under different atmospheric and regolith depths. Journal of Geophysical Research/JGR: Planets, 127, e2021JE007157. https://doi.org/10.1029/2021JE007157

 

77. S. J. Hofmeister*, E. Asvestari, Jingnan Guo, et al.(2022) How the area of solar coronal holes affects the properties of high-speed solar wind streams near Earth: An analytical model, Astronomy & Astrophysics (A&A), 659, A190. https://doi.org/10.1051/0004-6361/202141919

 

76. Li, Xiaolei, Yuming Wang*, Jingnan Guo, and Shaoyu Lyu (2022) Solar energetic particles produced during two fast coronal mass ejections, Astrophys. J. Lett., 928, L6(8pp). https://doi.org/10.3847/2041-8213/ac5b72

 

75. Sanchez-Cano, B., Lester, M., Andrews, D.J. et al. (2022). Mars’ plasma system. Scientific potential of coordinated multipoint missions: “The next generation”. Exp Astron, 54(2-3), pp. 641–676. https://doi.org/10.1007/s10686-021-09790-0

 

74. Salman Khaksarighiri, Jingnan Guo*, Robert Wimmer-Schweingruber, Livio Narici (2021) An easy-to-use function to assess deep space radiation in human brains, Scientific Reports, 11, 11687. https://doi.org/10.1038/s41598-021-90695-5

 

73. Johan L. Freiherr von Forstner*, MatejaDumbovic, Christian Mostl, Jingnan Guo et. al. (2021) Radial Evolution of the April 2020 Stealth Coronal Mass Ejection between 0.8 and 1 AU, A&A, A1, 16. https://doi.org/10.1051/0004-6361/202039848

 

72. Miho Janvier*, Pascal Demoulin, Jingnan Guo et al. (2021) The two-step Forbush decrease: a tale of two substructures modulating galactic cosmic rays within coronal mass ejections, The Astrophysical Journal, 922 216. https://doi.org/10.3847/1538-4357/ac2b9b

 

71. M.I. Dobynde* & J. Guo* (2021), Radiation environment at the surface and subsurface of the Moon: Model development and validation, Journal of Geophysical Research/JGR: Planets, 126, e2021JE006930. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JE006930

 

70. Jingnan Guo* et al. (2021), Radiation Environment for future Human Exploration on the surface of Mars: The Current Understanding based on MSL/RAD Dose Measurements, The Astronomy and Astrophysics Reviews (invited review), 29, 8. https://doi.org/10.1007/s00159-021-00136-5

 

69. Dumbovic, M., Veronig, A. M., Podladchikova, T., Thalmann, J. K., Chikunova, G., Dissauer, K., Magdalenic, J., Temmer, M., Guo, J., Samara, E (2021) The 2019 International Women’s Day event: A two-step solar flare with multiple eruptive signatures and low Earth impact, Astronomy & Astrophysics (A&A), 652, A159. https://www.aanda.org/articles/aa/pdf/2021/08/aa40752-21.pdf

 

68. B. Ehresmann, D. M. Hassler, C. Zeitlin , J. Guo et al. (2021) Natural Radiation Shielding on Mars measured with the MSL/RAD Instrument, JGR: Planets, 126, e2021JE006851. https://doi.org/10.1029/2021JE006851

 

67. Jingnan Guo* et al. (2021), Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation, Geophysical Research Letters/GRL, 48, e2021GL093912. https://doi.org/10.1029/2021GL093912

 

66. X. Li, Y. Wang*, J. Guo, R. Liu, and B. Zhuang (2021) Radial velocity map of solar wind transients in the field of view of STEREO/HI1 on 2010 April 3 and 4 , A&A, A58, 13. https://doi.org/10.1051/0004-6361/202039766

 

65. Paul Geyer, Manuela Temmer*, Jingnan Guo, Stephan G. Heinemann (2021) Properties of stream interaction regions at Earth and Mars during the declining phase of SC 24 , A&A, 649, A80. https://doi.org/10.1051/0004-6361/202040162

 

64. Shaoyu Lyu, Yuming Wang*, Xiaolei Li, Jingnan Guo et al. (2021) Three-dimensional reconstruction of coronal mass ejections by CORAR over different stereoscopic angle of STEREO twin spacecraft, The Astrophysical Journal , 909, 2,182. https://doi.org/10.3847/1538-4357/abd9c9

 

63. Erika Palmerio* et al. (2021), CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport, Space Weather, 2021, 19, e2020SW002654. http://dx.doi.org/10.1029/2020SW002654

 

62. F. Da Pieve*, G. Grono, J. Guo et al. (2021) Radiation Environment and Doses on Mars at Oxia Planum and Mawrth Vallis: Support for Exploration at Sites With High Biosignature Preservation Potential , Journal of Geophysical Research/JGR: Planets, 126, e2020JE006488. http://dx.doi.org/10.1029/2020JE006488

 

61. Zigong Xu*, Jingnan Guo*, Robert F. Wimmer-Schweingruber et. al. (2020) First Solar energetic particles measured on the Lunar far-side, The Astrophysical Journal Letters , 902, L30. https://doi.org/10.3847/2041-8213/abbccc

 

60. Shenyi Zhang, Robert F. Wimmer-Schweingruber*, Jia Yu et. al. (2020) First measurements

of the radiation dose on the lunar surface, Science Advances, 6, 39, eaaz1334. https://advances.sciencemag.org/content/6/39/eaaz1334

 

59. MatejaDumbovic*, Bojan Vrsnak, Jingnan Guo et al. (2020) Evolution of coronal mass ejections and the corresponding Forbush decrease: modelling vs multi-spacecraft observation, Solar Physics, 295, 104. https://doi.org/10.1007/s11207-020-01671-7

 

58. Robert F. Wimmer-Schweingruber*, Jia Yu, Stephan I. Botcher, Shenyi Zhang, Sonke Burmeister, Henning Lohf, Jingnan Guo et al. (2020) The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang E 4 , Space Science Rev., 216, 104. https://link.springer.com/article/10.1007/s11214-020-00725-3

 

57. Salman Khaksarighiri, Jingnan Guo*, Robert Wimmer-Schweingruber et al. (2020) Calculation of dose distribution in a realistic brain structure and the indication of space radiation influence on human brains, Life Sciences in Space Research/LSSR, 27, 33-48. https://doi.org/10.1016/j.lssr.2020.07.003

 

56. Yuming WANG*, Haisheng JI, Yamin WANG, Lidong XIA, Chenglong SHEN, Jingnan Guo et al. (2020), Concept of the Solar Ring Mission: Overview, SCIENCE CHINA Technological Sciences, https://doi.org/10.1007/s11431-020-1603-2

 

55. J. Freiherr von Forstner*, J. Guo*, R. F. Wimmer-Schweingruber, et al. (2020). Comparing the Properties of ICME-Induced Forbush decreases at Earth and Mars, JGR: Space Physics, 125. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027662

 

54. L. Rostel, J. Guo*, S. Banjac, R. F. Wimmer-Schweingruber, B. Heber (2020). Subsurface radiation environment of Mars and its implication for shielding protection of future habitats, JGR: Planets, 125. https://doi.org/10.1029/2019JE006246

 

53. Camilla Scolini*, Emmanuel Chane, Manuela Temmer, Emilia K. J. Kilpua, Karin Dissauer, Astrid M. Veronig, Erika Palmerio, Jens Pomoell, Mateja Dumbovic, Jingnan Guo, Luciano Rodriguez, Stefaan Poedts (2020). CME–CME Interactions as Sources of CME Geo-effectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in Early September 2017 , The Astrophysical Journal Supplements, 247,1. https://doi.org/10.3847/1538-4365/ab6216

 

52. J. Guo*, R. F. Wimmer-Schweingruber, M. DumboviÅLc, B. Heber, and Y. Wang (2020). A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth Planet. Phys., 4(1), 62–72. http://doi.org/10.26464/epp2020007

 

51. Honig, T., Witasse, O. G.*, Evans, H., Nieminen, P., Kuulkers, E., Taylor, M. G. G. T., Heber, B., Guo, J., and Sanchez-Cano, B (2019). Multi-point galactic cosmic ray measurements between 1 and 4.5 AU over a full solar cycle, Ann. Geophys., 37, 903–918.https://doi.org/10.5194/angeo-37-903-2019

 

50. J. Guo*, R. F. Wimmer-Schweingruber, Y. Wang, et al. (2019). The Pivot Energy of Solar Energetic Particles Affecting the Martian Surface Radiation Environment, ApJ Let. , 883, 1, L12. https://iopscience.iop.org/article/10.3847/2041-8213/ab3ec2

 

49. C. Zeitlin*, D. M. Hassler, B. Ehresmann, S. C. R. Rafkin, J. Guo, R. F. Wimmer- Schweingruber, T. Berger, D. Matthiae. (2019). Measurements of Radiation Quality Factor on Mars with the Mars Science Laboratory Radiation Assessment Detector, LSSR, 22, 89-97. https://www.sciencedirect.com/science/article/pii/S221455241930046X

 

48. M. Dumbovnic*, J. Guo*, M. Temmer, et al. (2019). Unusual plasma and particle signatures at Mars and STEREO-A related to CME-CME interaction, ApJ, 880, 18, https://iopscience.iop.org/article/10.3847/1538-4357/ab27ca

 

47. A. Papaioannou*, A. Belov, M. Abunina, J. Guo, et al. (2019). A catalogue of Forbush decreases recorded on the surface of Mars from 2012 until 2016: comparison with terrestrial FDs, Solar Physics, 294, 66. https://link.springer.com/article/10.1007/s11207-019-1454-2

 

46. J. Freiherr von Forstner, J. Guo*, R. F. Wimmer-Schweingruber, M. Temmer et al. (2019).Tracking and validating ICMEs propagating towards Mars using STEREO Heliospheric Imagers combined with Forbush decreases detected by MSL/RAD, Space Weather, 17, 586. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002138

 

45. C. Zeitlin*, L. Narici, R. R. Rios, A. Rizzo, D. Hassler, B. Ehresmann, R. Wimmer-Schweingruber, J. Guo, N. Schwadron, H. Spence (2019). Comparisons of High-LET Particle Spectra on the ISS and in Deep Space, Space Weather, 17, 396. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002103

 

44. J. Guo*, R. F. Wimmer-Schweingruber, M. Grande, et al. (2019). Ready functions for calculating the Martian radiation environment, Journal of Space Weather and Space Climate /SWSC, 9, A7. https://doi.org/10.1051/swsc/2019004

 

43. S. Banjac*, L. Berger, S. Burmeister, J. Guo, et al. (2019). Galactic Cosmic Ray induced absorbed dose rate in deep space – Accounting for detector size, shape, material, as well as for the solar modulation, SWSC, 9, A14. https://doi.org/10.1051/swsc/2019014

 

42. J. Guo*, S. Banjac*, L. Rostel, et al. (2019). Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars, SWSC, 9, A2. https://doi.org/10.1051/swsc/2018051

 

 

41. A. M. Veronig*, T. Podladchikova, K. Dissauer, M. Temmer, D. B. Seaton, D. Long, J. Guo et al. (2018). Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection, ApJ, 868, 2. http://iopscience.iop.org/article/10.3847/1538-4357/aaeac5/meta

 

40. B. R. Dennis*, M. A. Duval-Poo, M. Piana, A. R. Inglis, A. G. Emslie, J. Guo and Y. Xu (2018). Coronal Hard X-ray Sources Revisited, ApJ, 867, 1.http://iopscience.iop.org/article/10.3847/1538-4357/aae0f5/meta

 

39. D.M. Hassler*, C. Zeitlin, B. Ehresmann, R.F. Wimmer-Schweingruber, J. Guo et al. (2018). Space Weather on the Surface of Mars: Impact of the September 2017 Events, Space Weather, 16. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001959

 

38. J. Guo*, G. Buticchi, C. Gerada (2018). Space Weather Prediction to enhance the Reliability of the More Electric Aircraft, in proc. of IEEE International Symposium on Industrial Electronics, ISIE 2018. https://ieeexplore.ieee.org/document/8433845

 

37. J. Guo*, M. DumbovniÅLc, et al. (2018). Modeling the Evolution and Propagation of 10 September 2017 CMEs and SEPs Arriving at Mars Constrained by Remote Sensing and In Situ Measurement, Space Weather, 16. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018SW001973

 

36. C. Zeitlin*, D. Hassler, J. Guo et al. (2018). Analysis of the radiation hazard observed by RAD on the surface of Mars during the September 2017 solar particle event, GRL, 45, 5845–5851. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077760

 

35. B. Ehresmann*, D. Hassler, C. Zeitlin, J. Guo et al. (2018). Energetic Particle Radiation Environment Observed by RAD on the Surface of Mars during the September 2017 Event, GRL, 45, 5305–5311. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077801

 

34. Yuming Wang*, Chenglong Shen, Rui Liu, Jiajia Liu, Jingnan Guo et al. (2018). Understanding the Twist Distribution Inside Magnetic Flux Ropes by Anatomizing an Interplanetary Magnetic Cloud, JGR: Space Physics, 123. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024971

 

33. M. Battarbee*, J. Guo*, S. Dalla et al. (2018). Multi-spacecraft observations and transport simulations of solar energetic particles for the May 17th 2012 event, Astronomy & Astrophysics/A&A, 612, A116. https://www.aanda.org/articles/aa/abs/2018/04/aa31451-17/aa31451-17.html

 

32. R. M. Winslow*, N. A. Schwadron, N. Lugaz, J. Guo, et al. (2018). Opening a window on ICME related GCR modulation in the inner solar system, ApJ, 856, 139. http://iopscience.iop.org/article/10.3847/1538-4357/aab098/meta

 

31. J. Guo*, R. Lillis, R. Wimmer-Schweingruber et al. (2018). Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit, A&A, 611, A79. https://www.aanda.org/articles/aa/abs/2018/03/aa32087-17/aa32087-17.html

 

30. J. Guo*, C. Zeitlin, R. Wimmer-Schweingruber et al. (2018). A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars, Astronomical Journal, 155, 1. http://iopscience.iop.org/article/10.3847/1538-3881/aaa085/meta

 

29. J. L. Freiherr von Forstner, J. Guo*, and R. F. Wimmer-Schweingruber et al. (2018). Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars, JGR: Space Physics, 122. http://onlinelibrary.wiley.com/doi/10.1002/2017JA024700/full

 

28. J. Appel*, J. Kohler, Jingnan Guo et al. (2018). Detecting upward-directed charged particle fluxes in the Mars Science Laboratory Radiation Assessment Detector, Earth and Space Sci., 5. http://onlinelibrary.wiley.com/doi/10.1002/2016EA000240/full

 

27. J. Guo*, C. Zeitlin, R. Wimmer-Schweingruber et al. (2017). Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15 , LSSR, 14, 12-17. http://www.sciencedirect.com/science/article/pii/S2214552417300093

 

26. B. Ehresmann* et al. (2017). The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016 , LSSR, 14, 3-11. http://www.sciencedirect.com/science/article/pii/S2214552417300123

 

25. D. Matthia* et al. (2017). The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data, LSSR, 14, 18-28. http://www.sciencedirect.com/science/article/pii/S2214552417300111

 

24. O. Witasse* et al. (2017). Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en-route to Pluto -Comparison of its Forbush decreases at 1.4, 3.1 and 9.9 AU, JGR: Space Physics, 122,8, 7865–7890. http://onlinelibrary.wiley.com/doi/10.1002/2017JA023884/full

 

23. J. Guo*, T. C. Slaba et al. (2017). Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement, JGR: Planets, 112, 2, 329–341. http://onlinelibrary.wiley.com/doi/10.1002/2016JE005206/full

 

22. C. Zeitlin* et al. (2016). Calibration and Characterization of the Radiation Assessment Detector (RAD) on Curiosity, Space Sci Rev, 201.http://link.springer.com/article/10.1007/s11214-016-0303-y

 

21. B. Ehresmann* et al. (2016). Charged Particle Spectra Measured During the Transit to Mars With the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD), LSSR, 10, 29-37. http://www.sciencedirect.com/science/article/pii/S2214552416300050

 

20. J. Kohler* et al. (2016). Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars, Ann. Geophys., 34, 133-141. https://angeo.copernicus.org/articles/34/133/2016

 

19. D. Matthia* et al. (2016). The Martian surface radiation environment – a comparison of models and MSL/RAD measurements, SWSC, 6. https://doi.org/10.1051/swsc/2016008

 

18. R. F. Wimmer-Schweingruber* et al. (2015). On determining the zenith angle dependence of the Martian radiation environment at Gale Crater altitudes, GRL, 42. https://doi.org/10.1002/2015GL066664

 

17. J. Guo* et al. (2015). Modeling the Variations of Dose Rate Measured by RAD during the First MSL Martian Year: 2012-2014 , ApJ, 810, 24. https://iopscience.iop.org/article/10.1088/0004-637X/810/1/24

 

16. J. Kohler* et al. (2015). Measurements of the Neutron Spectrum in Transit to Mars on the Mars Science Laboratory, LSSR, 5, 6-12. https://doi.org/10.1016/j.lssr.2015.03.001

 

15. J. Guo* et al. (2015). Variations of Dose Rate Observed by MSL/RAD in Transit to Mars, A&A, 577. https://doi.org/10.1051/0004-6361/201525680

 

14. J. Guo* et al. (2015). MSL-RAD Radiation Enviroment Measurements, Radiation Protection Dosimetry, 166, 290-294. https://doi.org/10.1093/rpd/ncv297

 

13. S. C. R. Rafkin*, et al. (2014). Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector , JGR: Planets 119, 1345–1358. https://doi.org/10.1002/2013JE004525

 

12. M.-H. Y. Kim*, et al. (2014). Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O’Neill 2011/HZETRN model calculations, JGR: Planets, 119, 1311–1321. https://doi.org/10.1002/2013JE004549

 

11. J. Kohler* et al. (2014). Measurements of the Neutron Spectrum on the Martian Surface with MSL/RAD, JGR: Planets, 119, 594–603. https://doi.org/10.1002/2013JE004539

 

10. B. Ehresmann* et al. (2014). Charged Particle Spectra Obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the Surface of Mars, JGR: Planets, 119, 468–479, https://doi.org/10.1002/2013JE004547

 

9. D. M. Hassler* et al. (2014). Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover, Science, 343, 6169. https://www.science.org/doi/abs/10.1126/science.1244797

 

8. C. Zeitlin* et al. (2013). Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory, Science, 340, 6136. http://www.sciencemag.org/content/340/6136/1080

 

7. A. Posner* et al. (2013). The Hohmann–Parker effect measured by the Mars Science Laboratory on the transfer from Earth to Mars: Consequences and opportunities, Planetary and Space Science, 89, 12. https://doi.org/10.1016/j.pss.2013.09.013

 

6. J. Guo*, A. Gordon Emslie* and M. Piana (2013). The Specific Acceleration Rate in Loop-Structured Solar Flares – Implications for Electron Acceleration Models, ApJ, 766, 28. https://iopscience.iop.org/article/10.1088/0004-637X/766/1/28

 

5. J. Guo*, A. Gordon Emslie, A. Maria Massone and M. Piana (2012). Properties of the Acceleration Regions in Several Loop-Structured Solar Flares, ApJ, 755, 32. https://iopscience.iop.org/article/10.1088/0004-637X/755/1/32/pdf

 

4. Gabriele Torre*, Nicola Pinamonti, A. Gordon Emslie, Jingnan Guo, Anna Maria Massone and Michele Piana (2012). Empirical Determination of the Energy Loss Rate of Accelerated Electrons in Solar Flares, ApJ, 751, 129. http://iopscience.iop.org/0004-637X/751/2/129/

 

3. Jingnan Guo*, A. Gordon Emslie, Eduard P. Kontar, Federico Benvenuto, Anna Maria Massone and Michele Piana (2012). Determination of the acceleration region size in a loopstructured solar flare, A&A, 543, 53. https://www.aanda.org/10.1051/0004-6361/201219341

 

2. Jingnan Guo*, Siming Liu, Lyndsay Fletcher and Eduard Kontar. (2011). Relationship Between Hard and Soft X-ray Emission Components of a Solar Flare, ApJ, 728, 4. https://doi.org/10.1088/0004-637X/728/1/4

 

1. Guo, J.-N.*, Buchner, J., Otto, A., Santos, J., Marsch, E. and Gan, W.-Q. (2010). Is the 3-D magnetic null point with a convective electric fields an efficient particle accelerator? , A&A, 513, 13. https://doi.org/10.1051/0004-6361/200913321