Back to top






1. 国家自然科学基金优秀青年科学基金项目,高温高压实验岩石学,2014/01-2016/12

2. 国家自然科学基金面上项目,玄武质熔体水扩散系数测定与地月岩浆海的水迁移和演化,2015/01-2018/12

3. 国家自然科学基金重大项目“地球内部水的分布和效应”课题2,水在矿物、熔体和流体之间的分配行为及其电导率效应,2016/01-2020/12

4. 中国科学院B类先导专项“地球内部运行机制与表层响应”子课题,挥发分在地球内部的赋存形式和物理化学效应,2016/07-2021/06

5. 国家杰出青年科学基金项目,岩浆熔体和流体的实验岩石学,2019/01-2023/12


2003/01 – 2008/12,密西根大学,地质科学系(现地球和环境科学系),博士

1997/09 – 2002/07,中国科学技术大学,地球和空间科学学院,学士









2012/05 至今,中国科学技术大学,地球和空间科学学院,教授





Science in China: Earth Sciences (《中国科学:地球科学》)编委

Chemical Geology客座编辑




*Ni H.W., Kiseeva K., Lord O., Thomson A., Mezger K. (2018) The speciation, distribution, transport, and impact of volatile elements in the Earth's interior. Chemical Geology, 478, 1.

*Ni H.W., Zhang L. (2018) A general model of water diffusivity in calc-alkaline silicate melts and glasses. Chemical Geology, 478, 60-68.

*Ni H.W., Shi H., Zhang L., Li W.-C., Guo X., Liang T. (2018) Cu diffusivity in granitic melts with application to the formation of porphyry Cu deposits. Contributions to Mineralogy and Petrology, 173, 50.

*Ni H.W., de Koker N. (2018) Diffusion in oxide glass-forming systems. Encyclopedia of Glass Science, Technology, History, and Culture, Wiley (edited by P. Richet), in press.

Guo X., Zhang L., Su X., Mao Z., Gao X.-Y., Yang X.-Z., *Ni H.W. (2018) Melting inside the Tibetan crust? - Constraint from electrical conductivity of peraluminous granitic melt. Geophysical Research Letters, 45, 3906-3913.

Zhang P., Zhang L., Wang Z., *Li W.-C., Guo X., *Ni H.W. (2018) Diffusion of molybdenum and tungsten in anhydrous and hydrous granitic melts. American Mineralogist, in press.

*Audetat A., Zhang L., Ni H.W. (2018) Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and consequences for the composition of melt inclusions. Geochimica et Cosmochimica Acta, 243, 99-115.

Duan Y., Li X., Sun N., Ni H.W., Tkachev S.N., *Mao Z. (2018) Single crystal elasticity of MgAl2O4-spinel up to 10.9 GPa and 1000 K: implication for the velocity structure of the top upper mantle. Earth and Planetary Science letters, 481, 41-47.

Duan Y., Sun N., Wang S., Li X., Guo X., Ni H.W., Prakapenka V.B., *Mao Z. (2018) Phase stability and thermal equation of state of d-AlOOH: implication for water transportation to the deep lower mantle. Earth and Planetary Science letters, 494, 92-98.

Li X., Zhang Z., Lin J.F., Ni H.W., Prakapenka V.B., *Mao Z. (2018) New high pressure phase of CaCO3 at the topmost lower mantle: implication for the deep mantle carbon transportation. Geophysical Research Letters, 45, 1355-1360.



*Ni H.W., Zhang L., Xiong X., Mao Z., Wang J.Y. (2017) Supercritical fluids at subduction zones: evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167, 62-71.

*Ni H.W., *Zheng Y.-F., Mao Z., Wang Q., Chen R.-X., Zhang L. (2017) Distribution, cycling, and impact of water in the Earth’s interior. National Science Review, 4, 879-891.

Guo X., Li B., *Ni H.W., Mao Z. (2017) Electrical conductivity of hydrous andesitic melts pertinent to subduction zones. Journal of Geophysical Research, 122, 1777-1788.

Zhang L., Guo X., Wang Q., Ding J., *Ni H.W. (2017) Diffusion of hydrous species in model basaltic melt. Geochimica et Cosmochimica Acta, 215, 377-386.

*倪怀玮 (2017) 硅酸盐熔体中的水. 矿物岩石地球化学通报, 36, 1-5.

*倪怀玮, 郭璇 (2017) 硅酸盐熔体电导率实验研究及其对地球内部熔融的启示. 中国科学技术大学学报, 47, 155-162.

刘曦, 代立东, 邓力维, 范大伟, 刘琼, 倪怀玮 et al. (2017) 近十年我国在地球内部物质高压物性实验研究方面的主要进展. 高压物理学报, 31, 657-682.



*Ni H.W., Zhang L., Guo X. (2016) Water and partial melting of Earth's mantle. Science China Earth Sciences, 59, 720-730.

Guo X., Zhang L., Behrens H., *Ni H.W. (2016) Probing the status of felsic magma reservoirs: constraints from the P-T-H2O dependences of electrical conductivity of rhyolitic melt. Earth and Planetary Science Letters, 433, 54-62.

Guo X. Chen Q., *Ni H.W. (2016) Electrical conductivity of hydrous silicate melts and aqueous fluids: measurement and implications. Science China Earth Sciences, 59, 889-900.

*Yang W., Lin Y., Hao J., Zhang J., Hu S., Ni H.W. (2016) Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contributions to Mineralogy and Petrology, 171, 28.

Li X., *Mao Z., Sun N., Liao Y., Zhai S., Wang Y., Ni H.W., Wang J., Tkachev S.N., Lin J.-F. (2016) Elasticity of single-crystal superhydrous phase B at simultaneous high pressure-temperature conditions. Geophysical Research Letters, 43, 8458-8465.



*Ni H.W., Hui H., Steinle-Neumann G. (2015) Transport properties of silicate melts. Reviews of Geophysics, 53, 715-744.

*Ni H.W. (2015) Oxygen isotope thermometry, speedometry, and hygrometry: Apparent equilibrium temperature versus closure temperature. Geochemistry, Geophysics, Geosystems, 16, 27-39.



*Ni H.W., Keppler H., Walte N., Schiavi F., Chen Y., Masotta M., Li Z. (2014) In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks. Contributions to Mineralogy and Petrology, 167, 1003.

*Ni H.W., Chen Q., Keppler H. (2014) Electrical conductivity measurements of aqueous fluids under pressure with a hydrothermal diamond anvil cell. Review of Scientific instruments, 85, 115107.

*Ni H.W. (2014) The relationship between apparent equilibrium temperature and closure temperature with application to oxygen isotope geospeedometry. Chinese Journal of Geochemistry, 33, 125-130.

Masotta M., Ni H. W., Keppler H. (2014) In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts. Contributions to Mineralogy and Petrology, 167, 976.




*Ni H.W., Xu Z., Zhang Y. (2013) Hydroxyl and molecular H2O diffusivity in a haploandesitic melt. Geochimica et Cosmochimica Acta, 103, 36-48.

Ni H.W., *Keppler H. (2013) Carbon in silicate melts. Review in Mineralogy and Geochemistry, 75, 251-287.

*倪怀玮 (2013) 硅酸盐熔体的物理化学性质研究进展及其应用. 科学通报, 58, 865-890.



*Ni H.W., Keppler H. (2012) In-situ Raman spectroscopic study of sulfur speciation in oxidized magmatic-hydrothermal fluids. American Mineralogist, 97, 1348-1353.

*Ni H.W. (2012) Compositional dependence of alkali diffusivity in silicate melts: mixed alkali effect and pseudo alkali effect. American Mineralogist, 97, 70-79.

*Yang X.-Z., Keppler H., McCammon C., Ni H.W. (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163, 33-48.



*Ni H.W., de Koker N. (2011) Thermodynamics, diffusion and structure of NaAlSi2O6 liquid at mantle conditions: a first-principles molecular dynamics investigation. Journal of Geophysical Research, 116, B09202, doi:10.1029/2010JB008072

*Ni H.W., Keppler H., Manthilake M.A.G.M., Katsura T. (2011a) Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contributions to Mineralogy and Petrology, 162, 501-513.

*Ni H.W., Keppler H., Behrens H. (2011b) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contributions to Mineralogy and Petrology, 162, 637-650.

*Xiong X.L., Keppler H., Audétat A., Ni H.W., Sun W., Li Y. (2011) Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75, 1673-1692.

*Yang X.-Z., Keppler H., McCammon C., Ni H.W., Xia Q.-K., Fan Q.-C. (2011) The effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research, 116, B04208, doi:10.1029/2010JB008010



*Zhang Y., Ni H.W. (2010) Diffusion of H, C, and O components in silicate melts. Review in Mineralogy and Geochemistry, 72, 171-225.

*Zhang Y., Ni H.W., Chen Y. (2010) Diffusion data in silicate melts. Review in Mineralogy and Geochemistry, 72, 311-408.



*Ni H.W., Liu Y., Wang L.J., Zhang Y. (2009a) Water speciation and diffusion in haploandesitic melts at 743-873 K and 100 MPa. Geochimica et Cosmochimica Acta, 73, 3630-3641.

*Ni H.W., Behrens H., Zhang Y. (2009b) Water diffusion in dacitic melt. Geochimica et Cosmochimica Acta, 73, 3642-3655.



Ni H.W., *Zhang Y. (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chemical Geology, 250, 68-78.